Efficient Deep Learning of Nonlocal Features for Hyperspectral Image Classification
نویسندگان
چکیده
Deep learning based methods, such as Convolution Neural Network (CNN), have demonstrated their efficiency in hyperspectral image (HSI) classification. These methods can automatically learn spectral-spatial discriminative features within local patches. However, for each pixel an HSI, it is not only related to its nearby pixels but also has connections far away from itself. Therefore, incorporate the long-range contextual information, a deep fully convolutional network (FCN) with efficient non-local module, named ENL-FCN, proposed HSI In framework, FCN considers entire input and extracts information receptive field. The module embedded unit capture information. Different traditional neural networks, extracted specially designed criss-cross path computation efficiency. Furthermore, by using recurrent operation, pixel's response aggregated all of HSI. benefits our ENL-FCN are threefold: 1) incorporated effectively, 2) be freely plug-and-play fashion, 3) much fewer parameters requires less computational resources. experiments conducted on three popular datasets demonstrate that method achieves state-of-the-art classification performance lower cost comparison several leading networks
منابع مشابه
Hyperspectral image classification via contextual deep learning
Because the reliability of feature for every pixel determines the accuracy of classification, it is important to design a specialized feature mining algorithm for hyperspectral image classification. We propose a feature learning algorithm, contextual deep learning, which is extremely effective for hyperspectral image classification. On the one hand, the learning-based feature extraction algorit...
متن کاملActive Learning for Hyperspectral Image Classification
Obtaining labeled data for supervised classification of remotely sensed imagery is expensive and time consuming. Further, manual selection of the training set is often subjective and tends to induce redundancy into the supervised classifier, thus considerably slowing the training phase. Active learning (AL) integrates data acquisition with the classifier design by ranking the unlabeled data to ...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملA Diversified Deep Belief Network for Hyperspectral Image Classification
In recent years, researches in remote sensing demonstrated that deep architectures with multiple layers can potentially extract abstract and invariant features for better hyperspectral image classification. Since the usual real-world hyperspectral image classification task cannot provide enough training samples for a supervised deep model, such as convolutional neural networks (CNNs), this work...
متن کاملDeep Convolutional Neural Networks for Hyperspectral Image Classification
Recently, convolutional neural networks have demonstrated excellent performance on various visual tasks, including the classification of common two-dimensional images. In this paper, deep convolutional neural networks are employed to classify hyperspectral images directly in spectral domain. More specifically, the architecture of the proposed classifier contains five layers with weights which a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Geoscience and Remote Sensing
سال: 2021
ISSN: ['0196-2892', '1558-0644']
DOI: https://doi.org/10.1109/tgrs.2020.3014286